Так как AB = BC, то треугольник ABC - равнобедренный с основанием AC. В равнобедренном треугольнике углы при основании равны, то есть ∠BAC = ∠BCA.
Сумма углов треугольника равна 180°. Значит, ∠ABC + ∠BAC + ∠BCA = 180°.
Обозначим ∠BCA = x, тогда ∠BAC = x. Получаем:
∠ABC + x + x = 180°.
2x = 180° - ∠ABC.
x = (180° - ∠ABC)/2.
a) x = (180° - 86°)/2 = 94°/2 = 47°.
Ответ: 47°.
б) x = (180° - 104°)/2 = 76°/2 = 38°.
Ответ: 38°.
в) x = (180° - 32°)/2 = 148°/2 = 74°.
Ответ: 74°.