1) Дано: арифметическая прогрессия, $$a_1 = 11$$, $$a_3 = 19$$, $$a_4 = 23$$. Найти: $$a_2 = x$$
Решение:
$$d = a_4 - a_3 = 23 - 19 = 4$$.
$$a_3 = a_1 + 2d$$
$$19 = 11 + 2d$$
$$2d = 19 - 11$$
$$2d = 8$$
$$d = 4$$
$$a_2 = a_1 + d = 11 + 4 = 15$$.
2) Дано: арифметическая прогрессия, $$a_1 = -6$$, $$a_3 = -2$$, $$a_4 = 0$$. Найти: $$a_2 = x$$
Решение:
$$d = a_4 - a_3 = 0 - (-2) = 0 + 2 = 2$$.
$$a_3 = a_1 + 2d$$
$$-2 = -6 + 2d$$
$$2d = -2 + 6$$
$$2d = 4$$
$$d = 2$$
$$a_2 = a_1 + d = -6 + 2 = -4$$.
3) Дано: арифметическая прогрессия, $$a_1 = -9$$, $$a_3 = -13$$, $$a_4 = -15$$. Найти: $$a_2 = x$$
Решение:
$$d = a_4 - a_3 = -15 - (-13) = -15 + 13 = -2$$.
$$a_3 = a_1 + 2d$$
$$-13 = -9 + 2d$$
$$2d = -13 + 9$$
$$2d = -4$$
$$d = -2$$
$$a_2 = a_1 + d = -9 + (-2) = -11$$.
4) Дано: арифметическая прогрессия, $$a_1 = -10$$, $$a_3 = -14$$, $$a_4 = -16$$. Найти: $$a_2 = x$$
Решение:
$$d = a_4 - a_3 = -16 - (-14) = -16 + 14 = -2$$.
$$a_3 = a_1 + 2d$$
$$-14 = -10 + 2d$$
$$2d = -14 + 10$$
$$2d = -4$$
$$d = -2$$
$$a_2 = a_1 + d = -10 + (-2) = -12$$.
Ответ: 1) 15, 2) -4, 3) -11, 4) -12