Пусть задуманное число равно х. Тогда половина задуманного числа равна $$x/2$$, а шестая часть задуманного числа равна $$x/6$$. По условию задачи, половина этого числа на 76 больше шестой части задуманного числа. Составим уравнение:
$$x/2 = x/6 + 76$$
Приведем дроби к общему знаменателю:
$$3x/6 = x/6 + 76$$
Умножим обе части уравнения на 6, чтобы избавиться от дробей:
$$3x = x + 456$$
Перенесем слагаемое с переменной в левую часть:
$$3x - x = 456$$
$$2x = 456$$
Разделим обе части уравнения на 2:
$$x = 456 ∶ 2$$
$$x = 228$$
Следовательно, задуманное число равно 228.
Ответ: 228