Используем теорему синусов: \(\frac{a}{\sin A} = \frac{b}{\sin B}\)
\(\frac{10}{\sin 45^\circ} = \frac{12}{\sin B}\)
\(\sin B = \frac{12 * \sin 45^\circ}{10} = \frac{12 * 0.7071}{10} = 0.8485\)
\(B = \arcsin(0.8485) \approx 58.1^\circ\). Теперь найдем ∠C: \(∠C = 180^\circ - 45^\circ - 58.1^\circ = 76.9^\circ\).
Теперь найдем сторону \(c\): \(\frac{c}{\sin C} = \frac{a}{\sin A}\)
\(c = \frac{10 * \sin 76.9^\circ}{\sin 45^\circ} = \frac{10 * 0.9740}{0.7071} \approx 13.8\).
Ответ: ∠B ≈ 58.1°, ∠C ≈ 76.9°, c ≈ 13.8