Вопрос:

Задание 13. №6. Найдите значение выражения: \frac{(a^7)^3 \cdot a^{10}}{a^{28}} при a=4;

Ответ:

Сначала упростим выражение: \(\frac{(a^7)^3 \cdot a^{10}}{a^{28}} = \frac{a^{7 \cdot 3} \cdot a^{10}}{a^{28}} = \frac{a^{21} \cdot a^{10}}{a^{28}} = \frac{a^{21+10}}{a^{28}} = \frac{a^{31}}{a^{28}} = a^{31-28} = a^3\). Теперь подставим значение \(a=4\): \(4^3 = 4 \cdot 4 \cdot 4 = 64\). Ответ: 64.
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие